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occurred is important bhecause it may be one determinant of performance.
We considered that shortly after arrival at high altitude increased
breathing was stimulated by hypoxia, but the increase was limited by
hypocapnic alkalosis and by (possibly) hypoxic depression of central
mechanisms controlling ventilation. We considered that by comparing
proper ventilatory measurements made at low altitude with actual values at
high altitude we might gain insight into controlling mechanisms and we
might also develop tests of predictive value. The low altitude tests
included an acute hypoxic stimulus where COj Was not allowed to change as
hypoxia developed. This isocapnic hypoxic response was taken as a pure
measure of the ventilatory response to hypoxia. A second low altitude
test, designed to be analogous to the actual high altitude exposure, was
acute hypoxic exposure where C0, was allowed to change (poikilocapnia)
because no CO9 was added to the inspired air. In comparing the
ventilatory responses to these two low altitude tests for 12 male
volunteers we found as expected that for the group as a whole ventilation
was less during poikilocapnic hypoxia than during isocapnic hypoxia. The
unexpected finding was that in 4 subjects the two responses were not
different and that these subjects had particularly 1low ventilatory
sensitivity to COj.

>~ When the 12 subjects were taken from low altitude (1600M in Denver,
CO) to high altitude (4300M on Pike's Peak) they underwent acclimatization
over 5 days. The surprising finding was that on day 4 and day 5 their
ventilations were predicted by the acute isocapnic hypoxic response at low
altitude. It was as though, after acclimatization, the relatively pure
response to acute hypoxia was a major determinant of ventilation. On
arrival at high altitude (Pike's Peak day 1) the ventilation showed only a
small increase above the Denver value, as though the response to hypoxia
were inhibited. % The inhibition could be accounted for only in part by the
hypocapnic alkalosis. To account for the remainder we recalled the
subjects some donths later and subjected them to more prolonged, i.e. 30
minutes, poikilocapaic hypoxia. Ventilation rose and then fell
documenting the presence of hypoxic depression. The level achieved was
that observed on Pike's Peak day 1. The two factors inhibiting
ventilation on arrival then appeared to be both hypoxic depression and
hypocapnic alkalosis.

~/Total ventilation, however, was not the most sensitive measure of
acclimatization because we found it was influenced by metabolic increases
at rest and dead space increases during exercise. A more sensitive
measure and one that provided useful inter-individual comparisons involved
the use of an 5a0p-PCO; stimulus response curve, similar to that proposed
by Rahn and Otis. Examination of these curves 1in relation to high
altitude values suggested that it was hypoxic depression at high altitude
that was responsible for the poor ventilatory response and the development
of syptoms in some individuals at high altitude. ,
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ABSTRACT
TOROIDAL SELF-FIELD CORRECTIONS TO THE LINEAR DISPERSION RELATION
FOR THE NEGATIVE MASS INSTABILITY IN A MODIFIED BETATRON.
¢--B. B. GODFREY, T. P. HUGHES, AND M. M. CAMPBELL, MISSION RESEARCH

CORPORATION, ALBUQUERQUE, NM 87106. --NEGATIVE MASS INSTABILITY
GROWTH RATES DETERMINED FROM THREE-DIMENSIONAL PIC CODE
SIMULATIONS OF HIGH CURRENT MODIFIED BETATRONS DO NOT AGREE
PARTICULARLY WELL WITH AVAILABLE LINEAR THEORY, AS NOTED IN A
COMPANION PAPER. PUBLISHED LINEAR ANALYSES OF THE NEGATIVE MASS
INSTABILITY TREAT PARTICLE DYNAMICS IN TOROIDAL GBOUBTBY BUT THE
ELECTROMAGNETIC FIELDS IN CYLINDRICAL GEOMETRY. W’I'HAVE,
THEREFORE, DEVELOPED A NEW MODEL EMPLOYING TOROIDAL FIELDS;

IT I8 VALID FOR ARBITRARY TOROIDAL MODE NUMBERS AND A VARIETY OF
ACCELERATOR CAVITY MINOR CROSS SECTIONS. THE BEAM MINOR RADIUS
IS ASSUMED SMALL COMPARED TO THAT OF THE CAVITY. DERIVATION OF
THE DISPERSION RELATION AND NUMERICAL SOLUTIONS OF IT WILL BE
PRESENTED.

.WOBK SUPPORTED BY THE OFFICE OF NAVAL RESEARCH.

1. T. P. HUGHES, M. M. CAMPBELL, AND B. B. GODFREY, "SIMULATION
AND THEORY OF THE NEGATIVE MASS INSTABILITY IN A MODIFIRD
BETATRON,” THIS CONFERENCE.




INCLUDING TOROIDAL FIELD CORRECTIONS IN MODIFIED
BETATRON DISPERSION RELATION IMPORTANT FOR
ACCURATE ESTIMATE OF NEGATIVE MASS INSTABILITY
GROWTH.

e EXISTING MODELS INCLUDE TOROIDAL FIELD CORRECTIONS
INCOMPLETELY OR NOT AT ALL

¢ COMPUTER SIMULATION RESULTS OFTEN DIFFER SIGNIFICANTLY
FROM DISPERSION RELATION PREDICTIONS

¢ LARGE TOROIDAL FIELD COUPLING IDENTIFIED — RADIAL
ELECTRIC SELF-FIELDS DRIVE BEAM AZIMUTHAL OSCILLATIONS,
AND CONVERSELY

PRESENT ANALYSIS ADDS TOROIDAL FIELD EFFECTS TO LINEAR
DISPERSION RELATION IN LONG WAVELENGTH LIMIT.
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COMPUTATIONS PERFORMED IN CYLINDRICAL GEOMETRY,
APPLY TO TOROIDALLY SYMMETRIC BEAM AND CAVITY

WITH CIRCULAR MINOR CROSS SECTIONS.

1 CAVITY
bl
BEAM
€ 2a—>
<« 2b >
€ R >




BEAM CENTROID EQUATIONS DRIVEN BY EQUILIBRIUM,
PERTURBED FIELDS

ve . [OE OB
YézwdE -V, B _+B. 5+ I.v I\ 6z
B R (az 6 a:)

2
. . * aEr aB’ 7’V9
76!‘-6Er+v9 68‘-30 6z+< ar +V0 ar - Rz dr

YV,
+ [()'2+1) ?29+Bz] 8Vq

. E
v36V,u 0By —F 41
Vo

EQUILIBRIUM BEAM VELOCITY SET BY RADIAL FORCE BALANCE.
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PERTURBED POTENTIAL EQUATIONS TAKE SIMPLE FORMS
IN LONG WAVELENGTH, LOW FREQUENCY LIMIT

(1/r 8/0r r 8/6r + 02/012) b= - 4p

(0107 1/¢ 616t 1+0%622) 4a -, 8Vy +V, 8p)

® PERTURBED DENSITY GIVEN BY CONTINUITY EQUATION

0p+0/06 P66+ 1/r S/0r r pdr+ 8/0z p 63 =0




BEAM AND FIELD EQUATIONS — FOURIER TRANSFORMED
IN TIME AND ANGLE — FORM COMPACT, SELF-ADJOINT

SYSTEM
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EQUILIBRIUM QUANTITIES, OTHER TERMS IN MATRIX:

E, = #/2 (r-R)+(Pa%/16R)(a2/b%+ 4 /n b/a)

B, =B n z/R By = By°
B, =-V, p/2 (r-R)+ V(ra2/16R) (-a2/b2 + 4 + 4 /n b/a)

+B,° (1-n(r-R/R))

a_z OE,/0s -V, OB /03 + 722

3
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TWO ORDERING SCHEMES CONSIDERED FOR SOLVING
EQUATIONS

e SIMPLE ALGEBRA, REASONABLE AGREEMENT WITH SIMULATIONS
- w,{/R~1

- EQUATIONS EXPANDED TO FIRST ORDER IN R7?

¢ DIFFICULT ALGEBRA, GREATER INTERNAL CONSISTANCY
- w, {/R~1/R

- EQUATIONS EXPANDED TO SECOND ORDER IN R!

¢ FIRST OPTION USED HERE, WORK ON SECOND IN PROGRESS
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RESULTING DISPERSION RELATION CLEARLY EXHIBITS
COUPLING BETWEEN LONGITUDINAL, TRANSVERSE

POLOIDAL MODES.

(Qz_sz) (Qzﬂur2 ~x/e) ~Q2 392/72=0
es 22- v/v3 (1/72+ 24nb/a) (¢2/R2 - L2

X & ((YVO /R - Er/'r'z).Q +(v/4R )’2) [wVG (3-3 a2/b2+ 4 4s b/a)
+4/R (1+a2/b% + 44nbsa)])2 - € (»V /R - E_/72)2
wzzn-n VGBZO/TR - 2u/‘>‘3b2 VvV Epa 2/4

°
urzl- (1-n) Vg B, /7R -2p/773p2 -(2Er'+Bz')/yR+(Er/72V9)2

E° 5 v/4R (a2/b%+4 /nb/a) B 2 v/4R (-a2/b%+ 4 + 4 4mb/a)
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TOROIDAL FIELD CORRECTIONS PRINCIPALLY IN COUPLING
COEFFICIENT X — FACILITATES FORMAL COMPARISON AMONG

MODELS.
e P. SPRANGLE AND J. C. VOMVORIDIS, NRL REPORT 4688
x =(rVg/R)2 (@2%-¢)
e T. P. HUGHES AND B. B. GODFREY, AMRC REPORT 469

x =(Vy /R)Q (Vg /R) @+ (£7/R?) v/¥3 (142 4w b/a))

-(»vy/R)? e
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LOW CURRENT NEGATIVE MASS GROWTH RATE FOR
STANDARD BETATRON (B9=O) EASILY RECOVERED.

e SIMPLIFIED DISPERSION RELATION

e INSTABILITY GROWTH RATE

r=w’1[(vg2/R? w 2% vy (1/2e2la bsa)] /2 LR

e VALID IN SMALL vY LIMIT

[vy (1/2¢2lwb/a)]1/2 << n/2
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NEW DISPERSION
MASS GROWTH FOR
ACCELERATOR DESIGN.

RELATION PREDICTS REDUCED NEGATIVE
NRL-ONR RACETRACK INDUCTION
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NEGATIVE MASS INSTABILITY HIGH ENERGY CUTOFF
NO LONGER PREDICTED FOR MODERATE CURRENT Bg=0

BETATRONS.
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NEW LONG WAVELENGTH NEGATIVE MASS INSTABILITY
DISPERSION RELATION DEVELOPED FOR MODIFIED

BETATRON.

e INCLUDES TOROIDAL FIELD EFFECTS TO FIRST ORDER IN
ASPECT RATIO

® YIELDS IMPROVED AGREEMENT WITH SIMULATION RESULTS
(SEE ADJACIENT PAPER)

¢ PREDICTS REDUCED INSTABILITY GROWTH FOR RACETRACK
INDUCTION ACCELERATOR

DERIVATION OF SECOND ORDER DISPERSION RELATION IN PROGRESS.
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